https://stanfordmlgroup.github.io/projects/mrnet/
class
Classify
Classify(in_dim, mid_dim, out_dim, p_drop=0.5) :: Module
in_dim
mid_dim
out_dim
p_drop
0.5
Module
The Classifier on top of the triplenet network
ClassifyRNN
ClassifyRNN(device, input_size, hidden_size, n_layers=1) :: Module
device
input_size
hidden_size
n_layers
1
Compressor
Compressor(device, args, train_data=None, backbone='resnet18', training=True, document=True) :: Module
args
train_data
None
backbone
'resnet18'
training
True
document
This class compresses the data from all slices to be only a vector. Contains the backbone and the pooling
TripleMRNet
TripleMRNet(device, args, train_data=None, backbone='resnet18', training=True, document=True) :: AbsModel
AbsModel
adapted from https://github.com/yashbhalgat/MRNet-Competition with the knowledge of: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002699